
Package index
-
PC_correction() - Apply Principal Component (PC)-based correction for confounding artifacts
-
SFT_fit() - Pick power to fit network to a scale-free topology
-
ZKfiltering() - Filter outlying samples based on the standardized connectivity (Zk) method
-
check_SFT() - Check scale-free topology fit for a given network
-
consensus_SFT_fit() - Pick power to fit networks to scale-free topology
-
consensus_modules() - Identify consensus modules across independent data sets
-
consensus_trait_cor() - Correlate set-specific modules and consensus modules to sample information
-
cor2adj() - Calculate an adjacency matrix from a correlation matrix
-
cormat_to_edgelist() - Transform a correlation matrix to an edge list
-
detect_communities() - Detect communities in a network
-
dfs2one() - Combine multiple expression tables (.tsv) into a single data frame
-
enrichment_analysis() - Perform overrepresentation analysis for a set of genes
-
exp2cor() - Calculate pairwise correlations between genes in a matrix
-
exp2gcn() - Infer gene coexpression network from gene expression
-
exp2gcn_blockwise() - Infer gene coexpression network from gene expression in a blockwise manner
-
exp2grn() - Infer gene regulatory network from expression data
-
exp_genes2orthogroups() - Collapse gene-level expression data to orthogroup level
-
exp_preprocess() - Preprocess expression data for network reconstruction
-
filt.se - Filtered maize gene expression data from Shin et al., 2021.
-
filter_by_variance() - Keep only genes with the highest variances
-
gene_significance() - Calculate gene significance for a given group of genes
-
get_HK() - Get housekeeping genes from global expression profile
-
get_edge_list() - Get edge list from an adjacency matrix for a group of genes
-
get_hubs_gcn() - Get GCN hubs
-
get_hubs_grn()get_hubs_ppi() - Get hubs for gene regulatory network
-
get_neighbors() - Get 1st-order neighbors of a given gene or group of genes
-
grn_average_rank() - Rank edge weights for GRNs and calculate average across different methods
-
grn_combined() - Infer gene regulatory network with multiple algorithms and combine results in a list
-
grn_filter() - Filter a gene regulatory network based on optimal scale-free topology fit
-
grn_infer() - Infer gene regulatory network with one of three algorithms
-
is_singleton() - Logical expression to check if gene or gene set is singleton or not
-
modPres_WGCNA() - Calculate module preservation between two expression data sets using WGCNA's algorithm
-
modPres_netrep() - Calculate module preservation between two expression data sets using NetRep's algorithm
-
module_enrichment() - Perform enrichment analysis for coexpression network modules
-
module_preservation() - Calculate network preservation between two expression data sets
-
module_stability() - Perform module stability analysis
-
module_trait_cor() - Correlate module eigengenes to trait
-
net_stats() - Calculate network statistics
-
og.zma.osa - Orthogroups between maize and rice
-
osa.se - Rice gene expression data from Shin et al., 2021.
-
parse_orthofinder() - Parse orthogroups identified by OrthoFinder
-
plot_PCA() - Plot Principal Component Analysis (PCA) of samples
-
plot_dendro_and_colors() - Plot dendrogram of genes and modules
-
plot_eigengene_network() - Plot eigengene network
-
plot_expression_profile() - Plot expression profile of given genes across samples
-
plot_gcn() - Plot gene coexpression network from edge list
-
plot_gene_significance() - Plot a heatmap of gene significance
-
plot_grn() - Plot gene regulatory network from edge list
-
plot_heatmap() - Plot heatmap of hierarchically clustered sample correlations or gene expression
-
plot_module_trait_cor() - Plot a heatmap of module-trait correlations
-
plot_ngenes_per_module() - Plot number of genes per module
-
plot_ppi() - Plot protein-protein interaction network from edge list
-
q_normalize() - Quantile normalize the expression data
-
remove_nonexp() - Remove genes that are not expressed based on a user-defined threshold
-
replace_na() - Remove missing values in a gene expression data frame
-
zma.interpro - Maize Interpro annotation
-
zma.se - Maize gene expression data from Shin et al., 2021.
-
zma.tfs - Maize transcription factors