Function reference
-
PC_correction()
- Apply Principal Component (PC)-based correction for confounding artifacts
-
SFT_fit()
- Pick power to fit network to a scale-free topology
-
ZKfiltering()
- Filter outlying samples based on the standardized connectivity (Zk) method
-
check_SFT()
- Check scale-free topology fit for a given network
-
consensus_SFT_fit()
- Pick power to fit networks to scale-free topology
-
consensus_modules()
- Identify consensus modules across independent data sets
-
consensus_trait_cor()
- Correlate set-specific modules and consensus modules to sample information
-
cor2adj()
- Calculate an adjacency matrix from a correlation matrix
-
cormat_to_edgelist()
- Transform a correlation matrix to an edge list
-
detect_communities()
- Detect communities in a network
-
dfs2one()
- Combine multiple expression tables (.tsv) into a single data frame
-
enrichment_analysis()
- Perform overrepresentation analysis for a set of genes
-
exp2cor()
- Calculate pairwise correlations between genes in a matrix
-
exp2gcn()
- Infer gene coexpression network from gene expression
-
exp2gcn_blockwise()
- Infer gene coexpression network from gene expression in a blockwise manner
-
exp2grn()
- Infer gene regulatory network from expression data
-
exp_genes2orthogroups()
- Collapse gene-level expression data to orthogroup level
-
exp_preprocess()
- Preprocess expression data for network reconstruction
-
filt.se
- Filtered maize gene expression data from Shin et al., 2021.
-
filter_by_variance()
- Keep only genes with the highest variances
-
gene_significance()
- Calculate gene significance for a given group of genes
-
get_HK()
- Get housekeeping genes from global expression profile
-
get_edge_list()
- Get edge list from an adjacency matrix for a group of genes
-
get_hubs_gcn()
- Get GCN hubs
-
get_hubs_grn()
get_hubs_ppi()
- Get hubs for gene regulatory network
-
get_neighbors()
- Get 1st-order neighbors of a given gene or group of genes
-
grn_average_rank()
- Rank edge weights for GRNs and calculate average across different methods
-
grn_combined()
- Infer gene regulatory network with multiple algorithms and combine results in a list
-
grn_filter()
- Filter a gene regulatory network based on optimal scale-free topology fit
-
grn_infer()
- Infer gene regulatory network with one of three algorithms
-
is_singleton()
- Logical expression to check if gene or gene set is singleton or not
-
modPres_WGCNA()
- Calculate module preservation between two expression data sets using WGCNA's algorithm
-
modPres_netrep()
- Calculate module preservation between two expression data sets using NetRep's algorithm
-
module_enrichment()
- Perform enrichment analysis for coexpression network modules
-
module_preservation()
- Calculate network preservation between two expression data sets
-
module_stability()
- Perform module stability analysis
-
module_trait_cor()
- Correlate module eigengenes to trait
-
net_stats()
- Calculate network statistics
-
og.zma.osa
- Orthogroups between maize and rice
-
osa.se
- Rice gene expression data from Shin et al., 2021.
-
parse_orthofinder()
- Parse orthogroups identified by OrthoFinder
-
plot_PCA()
- Plot Principal Component Analysis (PCA) of samples
-
plot_dendro_and_colors()
- Plot dendrogram of genes and modules
-
plot_eigengene_network()
- Plot eigengene network
-
plot_expression_profile()
- Plot expression profile of given genes across samples
-
plot_gcn()
- Plot gene coexpression network from edge list
-
plot_gene_significance()
- Plot a heatmap of gene significance
-
plot_grn()
- Plot gene regulatory network from edge list
-
plot_heatmap()
- Plot heatmap of hierarchically clustered sample correlations or gene expression
-
plot_module_trait_cor()
- Plot a heatmap of module-trait correlations
-
plot_ngenes_per_module()
- Plot number of genes per module
-
plot_ppi()
- Plot protein-protein interaction network from edge list
-
q_normalize()
- Quantile normalize the expression data
-
remove_nonexp()
- Remove genes that are not expressed based on a user-defined threshold
-
replace_na()
- Remove missing values in a gene expression data frame
-
zma.interpro
- Maize Interpro annotation
-
zma.se
- Maize gene expression data from Shin et al., 2021.
-
zma.tfs
- Maize transcription factors