Skip to contents

All functions

PC_correction()
Apply Principal Component (PC)-based correction for confounding artifacts
SFT_fit()
Pick power to fit network to a scale-free topology
ZKfiltering()
Filter outlying samples based on the standardized connectivity (Zk) method
check_SFT()
Check scale-free topology fit for a given network
consensus_SFT_fit()
Pick power to fit networks to scale-free topology
consensus_modules()
Identify consensus modules across independent data sets
consensus_trait_cor()
Correlate set-specific modules and consensus modules to sample information
cor2adj()
Calculate an adjacency matrix from a correlation matrix
cormat_to_edgelist()
Transform a correlation matrix to an edge list
detect_communities()
Detect communities in a network
dfs2one()
Combine multiple expression tables (.tsv) into a single data frame
enrichment_analysis()
Perform overrepresentation analysis for a set of genes
exp2cor()
Calculate pairwise correlations between genes in a matrix
exp2gcn()
Infer gene coexpression network from gene expression
exp2gcn_blockwise()
Infer gene coexpression network from gene expression in a blockwise manner
exp2grn()
Infer gene regulatory network from expression data
exp_genes2orthogroups()
Collapse gene-level expression data to orthogroup level
exp_preprocess()
Preprocess expression data for network reconstruction
filt.se
Filtered maize gene expression data from Shin et al., 2021.
filter_by_variance()
Keep only genes with the highest variances
gene_significance()
Calculate gene significance for a given group of genes
get_HK()
Get housekeeping genes from global expression profile
get_edge_list()
Get edge list from an adjacency matrix for a group of genes
get_hubs_gcn()
Get GCN hubs
get_hubs_grn() get_hubs_ppi()
Get hubs for gene regulatory network
get_neighbors()
Get 1st-order neighbors of a given gene or group of genes
grn_average_rank()
Rank edge weights for GRNs and calculate average across different methods
grn_combined()
Infer gene regulatory network with multiple algorithms and combine results in a list
grn_filter()
Filter a gene regulatory network based on optimal scale-free topology fit
grn_infer()
Infer gene regulatory network with one of three algorithms
is_singleton()
Logical expression to check if gene or gene set is singleton or not
modPres_WGCNA()
Calculate module preservation between two expression data sets using WGCNA's algorithm
modPres_netrep()
Calculate module preservation between two expression data sets using NetRep's algorithm
module_enrichment()
Perform enrichment analysis for coexpression network modules
module_preservation()
Calculate network preservation between two expression data sets
module_stability()
Perform module stability analysis
module_trait_cor()
Correlate module eigengenes to trait
net_stats()
Calculate network statistics
og.zma.osa
Orthogroups between maize and rice
osa.se
Rice gene expression data from Shin et al., 2021.
parse_orthofinder()
Parse orthogroups identified by OrthoFinder
plot_PCA()
Plot Principal Component Analysis (PCA) of samples
plot_dendro_and_colors()
Plot dendrogram of genes and modules
plot_eigengene_network()
Plot eigengene network
plot_expression_profile()
Plot expression profile of given genes across samples
plot_gcn()
Plot gene coexpression network from edge list
plot_gene_significance()
Plot a heatmap of gene significance
plot_grn()
Plot gene regulatory network from edge list
plot_heatmap()
Plot heatmap of hierarchically clustered sample correlations or gene expression
plot_module_trait_cor()
Plot a heatmap of module-trait correlations
plot_ngenes_per_module()
Plot number of genes per module
plot_ppi()
Plot protein-protein interaction network from edge list
q_normalize()
Quantile normalize the expression data
remove_nonexp()
Remove genes that are not expressed based on a user-defined threshold
replace_na()
Remove missing values in a gene expression data frame
zma.interpro
Maize Interpro annotation
zma.se
Maize gene expression data from Shin et al., 2021.
zma.tfs
Maize transcription factors