Infer gene coexpression network from gene expression in a blockwise manner
Source:R/gcn_inference.R
exp2gcn_blockwise.Rd
Infer gene coexpression network from gene expression in a blockwise manner
Usage
exp2gcn_blockwise(
exp,
net_type = "signed",
module_merging_threshold = 0.8,
SFTpower = NULL,
cor_method = "pearson",
TOM_type = NULL,
max_block_size = 5000,
min_module_size = 30,
...
)
Arguments
- exp
Either a `SummarizedExperiment` object, or a gene expression matrix/data frame with genes in row names and samples in column names.
- net_type
Character indicating the type of network to infer. One of 'signed', 'signed hybrid' or 'unsigned'. Default: 'signed'.
- module_merging_threshold
Numeric indicating the minimum correlation threshold to merge similar modules into a single one. Default: 0.8.
- SFTpower
Numeric scalar indicating the value of the \(\beta\) power to which correlation coefficients will be raised to ensure scale-free topology fit. This value can be obtained with the function
SFT_fit()
.- cor_method
Character with correlation method to use. One of "pearson" or "biweight". Default: "pearson".
- TOM_type
Character specifying the method to use to calculate a topological overlap matrix (TOM). If NULL, TOM type will be automatically inferred from network type specified in net_type. Default: NULL.
- max_block_size
Numeric indicating the maximum block size for module detection.
- min_module_size
Numeric indicating the minimum module size. Default: 30.
- ...
Additional arguments to
WGCNA::blockwiseModules()
.
Value
A list containing the following elements:
MEs Data frame of module eigengenes, with samples in rows, and module eigengenes in columns.
genes_and_modules Data frame with columns 'Genes' (character) and 'Modules' (character) indicating the genes and the modules to which they belong.
params List with network inference parameters passed as input.
dendro_plot_objects List with objects to plot the dendrogram in
plot_dendro_and_colors
. Elements are named 'tree' (an hclust object with gene dendrogram), 'Unmerged' (character with per-gene module assignments before merging similar modules), and 'Merged' (character with per-gene module assignments after merging similar modules).