Skip to contents

Calculate an adjacency matrix from a correlation matrix

Usage

cor2adj(cor_matrix, beta, net_type = "signed hybrid")

Arguments

cor_matrix

A numeric, symmetric matrix with pairwise correlations between genes (i.e., a 'correlation matrix').

beta

Numeric scalar indicating the value of the \(\beta\) power to which correlation coefficients will be raised to ensure scale-free topology fit.

net_type

Character indicating the type of network to infer. Default: "signed hybrid".

Value

A numeric, symmetric matrix with network adjacency values between genes.

Examples

# Simulate an expression matrix with 100 genes and 50 samples
exp <- matrix(
    rnorm(100 * 50, mean = 10, sd = 2),
    nrow = 100,
    dimnames = list(
        paste0("gene", seq_len(100)),
        paste0("sample", seq_len(50))
    )
)

# Calculate correlation matrix
cor_mat <- exp2cor(exp)

# Calculate adjacency matrix (random value for beta)
adj <- cor2adj(cor_mat, beta = 9)