Identify consensus modules across independent data sets
Source:R/consensus_modules.R
consensus_modules.Rd
Identify consensus modules across independent data sets
Usage
consensus_modules(
exp_list,
metadata,
power,
cor_method = "spearman",
net_type = "signed hybrid",
module_merging_threshold = 0.8,
TOM_type = NULL,
verbose = FALSE
)
Arguments
- exp_list
A list containing the expression data frames with genes in row names and samples in column names or `SummarizedExperiment` objects. The list can be created by using
list(exp1, exp2, ..., expn)
.- metadata
A data frame containing sample names in row names and sample annotation in the first column. Ignored if `exp_list` is a list of `SummarizedExperiment` objects, since the function will extract colData.
- power
Numeric vector of beta power for each expression set as calculated by
consensus_SFT_fit
.- cor_method
Correlation method used for network reconstruction. One of "spearman" (default), "biweight", or "pearson".
- net_type
Network type. One of "signed hybrid" (default), "signed" or "unsigned".
- module_merging_threshold
Correlation threshold to merge similar modules into a single one. Default: 0.8.
- TOM_type
Character indicating the type of Topological Overlap Matrix to (TOM) create. One of 'unsigned', 'signed', 'signed Nowick', 'unsigned 2', 'signed 2', and 'signed Nowick 2'. By default, TOM type is automatically selected based on network type.
- verbose
Logical indicating whether to display progress messages or not. Default: FALSE.
Value
A list containing 4 elements:
- consMEs
Consensus module eigengenes
- exprSize
Description of the multi-set object returned by the function
WGCNA::checkSets
- sampleInfo
Metadata for each expression set
- genes_cmodules
Data frame of genes and consensus modules
- dendro_plot_objects
Objects to be used in dendrogram plotting
Examples
set.seed(12)
data(zma.se)
filt.zma <- filter_by_variance(zma.se, n=500)
zma.set1 <- filt.zma[, sample(colnames(filt.zma), size=20, replace=FALSE)]
zma.set2 <- filt.zma[, sample(colnames(filt.zma), size=20, replace=FALSE)]
list.sets <- list(zma.set1, zma.set2)
# SFT power previously identified with consensus_SFT_fit()
cons_mod <- consensus_modules(list.sets, power = c(11, 13),
cor_method = "pearson")
#> ..connectivity..
#> ..matrix multiplication (system BLAS)..
#> ..normalization..
#> ..done.
#> ..connectivity..
#> ..matrix multiplication (system BLAS)..
#> ..normalization..
#> ..done.
#> ..done.
#> multiSetMEs: Calculating module MEs.
#> Working on set 1 ...
#> Working on set 2 ...