Skip to contents

Pick power to fit networks to scale-free topology

Usage

consensus_SFT_fit(
  exp_list,
  setLabels = NULL,
  metadata = NULL,
  cor_method = "spearman",
  net_type = "signed hybrid",
  rsquared = 0.8
)

Arguments

exp_list

A list of expression data frames or SummarizedExperiment objects. If input is a list of data frames, row names must correspond to gene IDs and column names to samples. The list can be created with list(exp1, exp2, ..., expn).

setLabels

Character vector containing labels for each expression set.

metadata

A data frame containing sample names in row names and sample annotation in the first column. Ignored if `exp_list` is a list of `SummarizedExperiment` objects, since the function will extract colData.

cor_method

Correlation method used for network reconstruction. One of "spearman" (default), "biweight", or "pearson".

net_type

Network type. One of "signed hybrid" (default), "signed" or "unsigned".

rsquared

Minimum R squared to consider the network similar to a scale-free topology. Default is 0.8.

Value

A list of 2 elements:

power

Numeric vector of optimal beta powers to fit networks to SFT

plot

A ggplot object displaying main statistics of the SFT fit test

Examples

set.seed(12)
data(zma.se)
filt.zma <- filter_by_variance(zma.se, n=500)
zma.set1 <- filt.zma[, sample(colnames(filt.zma), size=20, replace=FALSE)]
zma.set2 <- filt.zma[, sample(colnames(filt.zma), size=20, replace=FALSE)]
list.sets <- list(zma.set1, zma.set2)
cons_sft <- consensus_SFT_fit(list.sets, setLabels = c("Maize1", "Maize2"),
                              cor_method = "pearson")
#>    Power SFT.R.sq  slope truncated.R.sq mean.k. median.k. max.k.
#> 1      5    0.162 -0.241         0.0679    49.8     39.10  120.0
#> 2      6    0.317 -0.353         0.1980    42.9     31.60  109.0
#> 3      7    0.504 -0.441         0.4200    37.7     26.10  101.0
#> 4      8    0.653 -0.529         0.5950    33.5     22.50   93.7
#> 5      9    0.720 -0.598         0.6690    30.2     19.90   87.5
#> 6     10    0.731 -0.656         0.6590    27.4     18.80   82.1
#> 7     11    0.872 -0.686         0.8430    25.1     17.20   77.4
#> 8     12    0.826 -0.721         0.7800    23.1     15.40   73.1
#> 9     13    0.832 -0.739         0.7850    21.4     13.70   69.3
#> 10    14    0.903 -0.737         0.8780    19.9     12.80   65.8
#> 11    15    0.875 -0.756         0.8420    18.6     11.70   62.7
#> 12    16    0.894 -0.764         0.8680    17.4     10.90   59.8
#> 13    17    0.908 -0.756         0.8860    16.4     10.10   57.2
#> 14    18    0.930 -0.761         0.9180    15.4      9.36   54.7
#> 15    19    0.941 -0.762         0.9300    14.6      8.73   52.4
#> 16    20    0.944 -0.764         0.9340    13.8      8.20   50.3
#>    Power SFT.R.sq  slope truncated.R.sq mean.k. median.k. max.k.
#> 1      5   0.0693 -0.178         -0.154    59.7      44.3  137.0
#> 2      6   0.1920 -0.282          0.026    51.9      37.8  127.0
#> 3      7   0.3530 -0.378          0.226    45.8      33.3  119.0
#> 4      8   0.4680 -0.453          0.335    40.9      28.6  111.0
#> 5      9   0.6020 -0.530          0.505    36.9      25.6  105.0
#> 6     10   0.6560 -0.596          0.564    33.6      22.3   98.9
#> 7     11   0.7400 -0.664          0.667    30.8      20.1   93.8
#> 8     12   0.7690 -0.699          0.704    28.3      19.1   89.1
#> 9     13   0.8040 -0.747          0.749    26.2      17.5   84.9
#> 10    14   0.8060 -0.781          0.750    24.4      16.1   81.1
#> 11    15   0.8250 -0.792          0.776    22.7      14.8   77.5
#> 12    16   0.8510 -0.822          0.811    21.3      13.6   74.3
#> 13    17   0.8630 -0.816          0.824    20.0      12.5   71.4
#> 14    18   0.8360 -0.847          0.789    18.8      11.5   68.7
#> 15    19   0.8470 -0.867          0.804    17.7      11.0   66.1
#> 16    20   0.8720 -0.884          0.836    16.8      10.2   63.8