Correlate set-specific modules and consensus modules to sample information
Source:R/consensus_modules.R
consensus_trait_cor.Rd
Correlate set-specific modules and consensus modules to sample information
Arguments
- consensus
Consensus network returned by
consensus_modules
.- cor_method
Correlation method to be used. One of 'spearman' or 'pearson'. Default: 'pearson'.
- metadata_cols
A vector (either numeric or character) indicating which columns should be extracted from column metadata if exp is a `SummarizedExperiment` object. The vector can contain column indices (numeric) or column names (character). By default, all columns are used.
Value
Data frame of consensus module-trait correlations and p-values, with the following variables:
- trait
Factor, trait name. Each trait corresponds to a variable of the sample metadata (if numeric) or levels of a variable (if categorical).
- ME
Factor, module eigengene.
- cor
Numeric, correlation.
- pvalue
Numeric, correlation P-values.
- group
Character, name of the metadata variable.
Examples
set.seed(12)
data(zma.se)
filt.zma <- filter_by_variance(zma.se, n=500)
zma.set1 <- filt.zma[, sample(colnames(filt.zma), size=20, replace=FALSE)]
zma.set2 <- filt.zma[, sample(colnames(filt.zma), size=20, replace=FALSE)]
list.sets <- list(zma.set1, zma.set2)
# SFT power previously identified with consensus_SFT_fit()
consensus <- consensus_modules(list.sets, power = c(11, 13),
cor_method = "pearson")
#> ..connectivity..
#> ..matrix multiplication (system BLAS)..
#> ..normalization..
#> ..done.
#> ..connectivity..
#> ..matrix multiplication (system BLAS)..
#> ..normalization..
#> ..done.
#> ..done.
#> multiSetMEs: Calculating module MEs.
#> Working on set 1 ...
#> Working on set 2 ...
consensus_trait <- consensus_trait_cor(consensus, cor_method = "pearson")