class: center, middle, inverse, title-slide # Prioritizing soybean resistance genes against fungal diseases by integrating GWAS and gene coexpression networks ### Fabricio Almeida-Silva
@almeidasilvaf
### UENF / Brazil ### October 19, 2021 --- background-image: url(figs/pgce/intro_diseases.png) background-position: 95% 50% background-size: 45% ## Introduction <br /> .pull-left[ Soybean exports: 2% of Brazil's GNP .cit[(EMBRAPA, 2019)] Annual loss of billions of dollars .cit[(Osman et al., 2015)] ] --- background-image: url(figs/pgce/intro_diseases.png) background-position: 95% 50% background-size: 45% ## Introduction <br /> .pull-left[ Soybean exports: 2% of Brazil's GNP .cit[(EMBRAPA, 2019)]. Annual loss of billions of dollars .cit[(Osman et al., 2015)]. **Phytopathogenic fungi** - yield loss due to: 1. Leaf damage 2. Root rot 3. Seed damage 4. Death .n[2030] Agenda: sustainable increase in crop yield. .footnote[Source: Crop Protection Network | Chiotta *et al.*, 2016 | Daren Mueller | Elevagro | Agrolink] ] --- ## The research problem <br /> GWAS can identify .bgb[causative SNPs] associated with traits, but not .bgb[causative genes]. Current methods lead to high false-positive and false-negative rates. <br /> ![](https://github.com/almeidasilvaf/GCN_GWAS_fungi/blob/main/figs/gwas_problem_2.png?raw=true)<!-- --> .center[.font120[How do we confidently pick the causative gene(s)?]] --- ## A network-based solution .footnote[Bandara *et al.*, 2020] <br /> .bgb[Gene coexpression networks]: Nodes represent genes and edges represent their correlation coefficients. In large-scale analyses, we can detect .bgp[coexpression modules] → functionally similar genes. <img src="https://github.com/almeidasilvaf/GCN_GWAS_fungi/blob/main/figs/redes_example1.png?raw=true" width="75%" style="display: block; margin: auto;" /> --- ## The rationale: guilt-by-association
--- ## Goal <br /> .center[.font120[Identify high-confidence candidate genes involved in resistance to fungal diseases by integrating GWAS and coexpression networks]] --- background-image: url(figs/pgce/methods.png) background-size: contain ## Methods --- ## {cageminer}'s algorithm <img src="https://github.com/almeidasilvaf/bioc2021/blob/master/figs/Fig1.png?raw=true" width="95%" style="display: block; margin: auto;" /> --- background-image: url(https://github.com/almeidasilvaf/GCN_GWAS_fungi/blob/main/figs/frequency_of_snps_and_transcriptome_samples_overlap.png?raw=true) background-position: 95% 50% background-size: 45% 90% ## Data overview <br /> .pull-left[ .brand-charcoal[.font130[.bold[Filtering criterion:]]] A species must be represented by: - transcriptome samples - GWAS-derived SNPs ] --- background-image: url(figs/pgce/pathogens.png) background-size: 80% background-position: 50% 70% ## Data overview .footnote[Source: Crop Protection Network | Chiotta *et al.*, 2016 | Daren Mueller | Elevagro | Agrolink] --- ## Prioritized candidate genes .pull-left[ <br /> - *Cadophora gregata:* **11** - *Fusarium graminearum:* **59** - *Fusarium virguliforme:* **191** - *Macrophomina phaseolina:* **8** - *Phakopsora pachyrhizi:* **3** Highly .bgp[species-specific] response. ] .pull-right[ ![](https://github.com/almeidasilvaf/GCN_GWAS_fungi/blob/main/figs/venn_diagram_candidates.png?raw=true)<!-- --> ] --- background-image: url(figs/pgce/Fig3.png) background-size: 50% background-position: 95% 50% ## A network of processes <br /> .pull-left[ Both well-known and novel candidates. Most candidates likely involved in .bgp[defense signaling]. Hidden treasure? 8% of the candidates encode proteins of unknown function. ] --- background-image: url(figs/pgce/table_top_genes.png) background-position: 95% 65% background-size: 45% ## Promising targets for genetic engineering <br /> .pull-left[ Candidates were scored and ranked with: .font140[ `$$S_i = r_{pb} \kappa$$` ] where: `$$\kappa = 2 \text{ if the gene is a transcription factor}$$` `$$\kappa = 2 \text{ if the gene is a hub}$$` `$$\kappa = 3 \text{ if the gene is a hub and a transcription factor}$$` ] --- ## Potential accessions in the USDA germplasm <br /> **Goal:** .bgb[largest] number of .bgb[resistance SNPs] and .bgr[smallest] number of .bgr[susceptibility SNPs]. <br /> -- .pull-left[ .font140[ .blue[.bold[A → G]] 😀 👍🏼 GG = 2 AG = 1 AA = 0 ] ] -- .pull-right[ .font140[ .red[.bold[A → G]] 😨 👎🏻 GG = 0 AG = 1 AA = 2 ] ] --- background-image: url(figs/pgce/top_accessions.png) background-position: 95% 50% ## Potential accessions in <br /> the USDA germplasm <br /> .pull-left[ .font110[Main findings:] - There is still room for alelle pyramiding - Best accessions can be improved through MAS-based breeding or genetic engineering ] --- background-image: url(https://github.com/almeidasilvaf/GCN_GWAS_fungi/blob/main/figs/package_logos.png?raw=true) background-position: 95% 50% background-size: 40% ## Software development .pull-left[ .brand-charcoal[.font130[.bold[BioNERO:]]] R/Bioconductor package for: - expression data preprocessing - coexpression/regulatory network inference - functional analyses <br/ > .brand-charcoal[.font130[.bold[cageminer:]]] R/Bioconductor package for: - candidate gene prioritization by integrating GWAS and gene coexpression networks ] --- ## A web app to facilitate data reuse Users can explore the coexpression network we inferred at https://soyfungigcn.venanciogroup.uenf.br. <iframe src="https://soyfungigcn.venanciogroup.uenf.br/" width='100%' height='80%' title="SoyFungiGCN"> --- background-image: url(http://www.mcgilltribune.com/wp-content/uploads/2019/11/gene_editing.jpg) background-position: 95% 50% background-size: 40% ## Conclusions .pull-left[ We found high-confidence candidates that can be used to increase soybean resistance to fungal diseases through: - Gene editing - Plant transformation .footnote[Source: The McGill Tribune] ] --- background-image: url(https://www.agroscope.admin.ch/agroscope/en/home/topics/plant-production/plant-breeding/ackerpflanzen/selection_soja/_jcr_content/par/columncontrols/items/1/column/image/image.imagespooler.jpg/1473888418017/selection_soja_fleur.jpg) background-position: 95% 50% background-size: 40% ## Conclusions .pull-left[ We found high-confidence candidates that can be used to increase soybean resistance to fungal diseases through: - Gene editing - Plant transformation We found promising accessions in the USDA germplasm that can be used in: - Breeding programs - CRISPR/Cas-mediated editing to insert missing alleles. .footnote[Source: Agroscope] ] --- background-image: url(https://github.com/almeidasilvaf/GCN_GWAS_fungi/blob/main/figs/package_logos.png?raw=true) background-position: 95% 50% background-size: 40% ## Conclusions .pull-left[ We found high-confidence candidates that can be used to increase soybean resistance to fungal diseases through: - Gene editing - Plant transformation We found promising accessions in the USDA germplasm that can be used in: - Breeding programs - CRISPR/Cas-mediated editing to insert missing alleles. We have developed 2 packages and a web app that can serve as a valuable resource. ] --- class: sydney-yellow, middle, center ## Contact: <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M464 64H48C21.49 64 0 85.49 0 112v288c0 26.51 21.49 48 48 48h416c26.51 0 48-21.49 48-48V112c0-26.51-21.49-48-48-48zm0 48v40.805c-22.422 18.259-58.168 46.651-134.587 106.49-16.841 13.247-50.201 45.072-73.413 44.701-23.208.375-56.579-31.459-73.413-44.701C106.18 199.465 70.425 171.067 48 152.805V112h416zM48 400V214.398c22.914 18.251 55.409 43.862 104.938 82.646 21.857 17.205 60.134 55.186 103.062 54.955 42.717.231 80.509-37.199 103.053-54.947 49.528-38.783 82.032-64.401 104.947-82.653V400H48z"></path></svg> [fabricio_almeidasilva@hotmail.com](mailto:fabricio_almeidasilva@hotmail.com) <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"></path></svg> [@almeidasilvaf](https://twitter.com/almeidasilvaf) <svg viewBox="0 0 496 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M336.5 160C322 70.7 287.8 8 248 8s-74 62.7-88.5 152h177zM152 256c0 22.2 1.2 43.5 3.3 64h185.3c2.1-20.5 3.3-41.8 3.3-64s-1.2-43.5-3.3-64H155.3c-2.1 20.5-3.3 41.8-3.3 64zm324.7-96c-28.6-67.9-86.5-120.4-158-141.6 24.4 33.8 41.2 84.7 50 141.6h108zM177.2 18.4C105.8 39.6 47.8 92.1 19.3 160h108c8.7-56.9 25.5-107.8 49.9-141.6zM487.4 192H372.7c2.1 21 3.3 42.5 3.3 64s-1.2 43-3.3 64h114.6c5.5-20.5 8.6-41.8 8.6-64s-3.1-43.5-8.5-64zM120 256c0-21.5 1.2-43 3.3-64H8.6C3.2 212.5 0 233.8 0 256s3.2 43.5 8.6 64h114.6c-2-21-3.2-42.5-3.2-64zm39.5 96c14.5 89.3 48.7 152 88.5 152s74-62.7 88.5-152h-177zm159.3 141.6c71.4-21.2 129.4-73.7 158-141.6h-108c-8.8 56.9-25.6 107.8-50 141.6zM19.3 352c28.6 67.9 86.5 120.4 158 141.6-24.4-33.8-41.2-84.7-50-141.6h-108z"></path></svg> [almeidasilvaf.github.io](https://almeidasilvaf.github.io/home/) <svg viewBox="0 0 496 512" style="height:1em;position:relative;display:inline-block;top:.1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"></path></svg> [almeidasilvaf](https://github.com/almeidasilvaf/)