Skip to contents

Plot a heatmap of pairwise sample correlations with hierarchical clustering

Usage

plot_samplecor(
  se,
  coldata_cols = NULL,
  rowdata_cols = NULL,
  ntop = 500,
  cor_method = "pearson",
  palette = "Blues",
  ...
)

Arguments

se

A SummarizedExperiment object with a count matrix and sample metadata in the colData slot. If a rowData slot is available, it can also be used for clustering rows.

coldata_cols

A vector (either numeric or character) indicating which columns should be extracted from colData(se).

rowdata_cols

A vector (either numeric or character) indicating which columns should be extracted from rowData(se).

ntop

Numeric indicating the number of top genes with the highest variances to use for the PCA. Default: 500.

cor_method

Character indicating the correlation method to use. One of "pearson" or "spearman". Default: "pearson".

palette

Character indicating the name of the color palette from the RColorBrewer package to use. Default: "Blues".

...

Additional arguments to be passed to ComplexHeatmap::pheatmap(). These arguments can be used to control heatmap aesthetics, such as show/hide row and column names, change font size, activate/deactivate hierarchical clustering, etc. For a complete list of the options, see ?ComplexHeatmap::pheatmap().

Value

A heatmap of hierarchically clustered pairwise sample correlations.

Examples

data(se_chlamy)
se <- add_midparent_expression(se_chlamy)
se$Ploidy[is.na(se$Ploidy)] <- "midparent"
se$Generation[is.na(se$Generation)] <- "midparent"
plot_samplecor(se, ntop = 500)
#> converting counts to integer mode